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We present a mesoscopic model for bitumen and bituminous mixtures. The model, which is based
on dissipative particle dynamics, consists of different dynamical entities that represent the different
characteristic time scales. Through the stress relaxation function, the mechanical properties of the
model are investigated. For pure bitumen, the viscosity features super-Arrhenius behavior in the
low-temperature regime in agreement with experimental data. The frequency-dependent viscoelastic
properties show purely viscous behavior at low frequencies with increasing elasticity and hardening at
higher frequencies, as expected. The model dynamics are analyzed in the framework of longitudinal
hydrodynamics. The thermal process is two orders of magnitude slower than the attenuation of the
density-wave propagation; hence the dynamic structure factor is dominated by a sharp Rayleigh peak
and a relatively broad Brillouin peak. The model is applied to study triblock-copolymer-modified
bitumen mixtures. Effects of the polymer concentration and end-block interactions with the bitumen
are investigated. While the polymer concentration has an effect on the mechanical properties, the
effect of increasing repulsive interactions between the bitumen and the polymer end-blocks is much
more dramatic; it increases the viscosity of the mixture and shifts the onset of the elastic behavior
to lower frequencies. For increased repulsion, the polymer end-blocks form small clusters that can
be connected by a dynamic polymer backbone network. A simple Flory-Huggins analysis reveals
the onset of segregation of the end-blocks in the bitumen mixture in agreement with the simulation
data. Hence the changed mechanical properties are due to the emergence of large-scale structures
as the repulsion is increased, which conforms to known mechanisms of microphase separation in
polymer-modified bitumens. Published by AIP Publishing. https://doi.org/10.1063/1.5047461

I. INTRODUCTION

Bitumen is a product of oil refinery processes, and its
primarily role is as the binding material in road pavement.
Because bitumen is a residue product, its chemical compo-
sition is not unique; it is composed, primarily, of saturated,
naphthenic, and aromatic hydrocarbons with molecular masses
above 200 g/mol.1–3 Heteroatoms, like sulfur, are also present
and are believed to play a role in the chemical aging of bitu-
men although other mechanisms may also be relevant.4 The
road deterioration processes and durability are partly due to
the changing mechanical properties of the bitumen binder;4

however, the properties can be modified by mixing polymers
with bitumen5 such that pavement resistance to road rutting,
fatigue cracking, and moisture resistance increases. Polymer
modified bitumens (PMBs) are very complex multiphase mix-
tures, and the design of new road pavement materials calls for
a fundamental understanding of these systems rather than only
relying on trial-and-error experiments.

In recent years, detailed molecular dynamics simulations
have been undertaken to study bitumen6–12 and have resulted
in different molecular bitumen models by our groups.11,13,14
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For example, the Cooee-bitumen model is a united-atom-unit
model based on four characteristic molecules. Common for
these investigations are the limited characteristic time scales
on the order of 1 to 10 ns using standard central proces-
sor unit computers7 and to a few microseconds using coarse
graining and graphic-card based computations.14,15 There-
fore, only fast and usually single molecular processes can
be investigated. The collective processes that determine the
mechanical properties are associated with a large noise-to-
signal ratio and may therefore only be estimated from mod-
els,7,12 evaluated directly at sufficiently high temperatures,14,16

evaluated at lower temperatures with noise reduction meth-
ods,17,18 or evaluated through non-equilibrium simulations in
the non-Newtonian regime.19 The challenge becomes even
more evident for PMBs, in which the system characteris-
tic time and length scales increase dramatically. Here only
bitumen and part of a single homopolymer20 or a random
copolymer16 chain, each within a single phase, have been
simulated with detailed simulations. Finally, molecular-scale
time-temperature superposition (TTS) has been demonstrated
recently.21

One important result from molecular dynamics is that
there exist several molecular time scales. For example, the
diffusive time scale (molecular translational motion) for
asphaltenes is quite long compared to the time scale for the
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saturate component. This slow diffusivity is due to the for-
mation of asphaltene aggregates with large masses and slower
translational motion.9,20 Also, molecular rotational motion and
end-to-end relaxations introduce different time scales.8,12,14

Coupling among these time scales results in collective prop-
erties of interest, like viscosity, when designing new binder
materials for road pavement.

To address the problem of reaching the necessary time
scale, we propose here a new bitumen model. The model
is coarse grained in the sense that it excludes molecular
and atomic details, yet it includes many different dynam-
ical time scales. The model is generic in that it can rep-
resent any complex system characterized by different time
scales. Like real bitumen, the model is not unique and one
may vary the model components in accordance with bitu-
men age, oil origin, and so forth. With such a high degree
of coarse graining, the model predictions are only qualitative;
however, it allows for the investigation of modified bitumi-
nous mixtures. It expands on a related study by our group on
the mechanics experienced by different coarse-grained enti-
ties using dissipative particle dynamics (DPD).22 The model
is called “ROSE bitumen” as the aim of the model is to
bring new insight into the mechanical properties of road
pavements designed under the ROads Saving Energy (ROSE)
program.

The Superpave guidelines23 proposed that pavement
designs are based on the magnitude of the dynamic mod-
ulus, |G∗|, and phase angle, δ. To prevent rutting, the loss
compliance must be sufficiently small and thus |G∗|/sin(δ)
must be sufficiently large; that is, the pavement must be diffi-
cult to deform and any deformation should mainly be elastic.
Cracking resistance requires a deformable elastic material.
We will not discuss these guidelines; however, we use G∗

and δ to investigate the mechanical properties of the model.
In the analysis, we also investigate the hydrodynamics. This
shows that the thermal processes and density wave dampen-
ing occur on two different time scales. From this, we pre-
dict the characteristics of the dynamic structure factor of
bitumen.

II. THE ROSE MODEL AND METHODOLOGY

The model is an ensemble of interacting spherical par-
ticles. The particles may be connected to form a molecule,
by which we mean a dynamic component or entity that rep-
resents one or more single-particle dynamical time scales.
See Fig. 1. Here we include three types of molecules—a
dimer, pentamer, and cyclo-butamer—that represent (i) rel-
atively fast and slow translational motion of the smaller satu-
rates and aggregates, (ii) the slow rotational relaxations of the
asphaltenes, and (iii) the different end-to-end relaxations. We
shall use the terms “monomer” and “particle” interchangeably
throughout the text. As noted above, the choice of molecules
is not unique. The effect on the dynamics of adding poly-
mers is modeled by linear entities composed of 20 monomers.
Among the 20 monomers, the central 12 have the same inter-
action parameters as those of bitumen, while the four at
each end may have different parameters. We label the end
monomers in the polymer “S” and the polymer backbone

FIG. 1. Schematic illustration of the model. The bitumen is composed of three
different molecule types representing different characteristic dynamics: (i)
dimer, (ii) pentamer, and (iii) cyclo-butamer. Addition of a triblock copolymer
is illustrated with two different monomers, S and B. The model is simulated
in three dimensions.

and bitumen monomers “B,” motivated by styrene-butadiene
block copolymers in which the butadiene domain and bitu-
men are mutually compatible.24,25 This distinction allows for
the creation of polymer ends interacting more favorably with
each other than with bitumen, potentially creating a network
through the system, which is recognized experimentally as
an important contribution of polymer modification to bitumen
properties.24

The interactions are based on the dissipative particle
dynamics (DPD) method.26–28 Each monomer is a DPD par-
ticle with position, ri, and momentum, pi. The DPD particle
dynamics follow Newton’s equation of motion, Fi = mi r̈i,
where mi is the particle mass and Fi is the total force acting
on particle i. In DPD, the force is a sum of three contribu-
tions: the conservative force, FC

i , the random force, FR
i , and

the dissipative force, FD
i , i.e., Fi = FC

i + FR
i + FD

i . The con-
servative force can be written in terms of the potential energy
function of the system FC

i = −∇ri U(r), where r = (r1, r2, . . .)
and
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Here, aij are the interaction parameters that quantify the repul-
sion between particles i and j (depending on their type);
rij = |rij |, where rij is the vector of separation, rij = ri − rj; rc is
the cut-off radius; lb is the zero-force bond length; ks, kθ , and
kφ are constants; and θ and φ are the bond and dihedral angles,
respectively. The first term on the right-hand side is due to non-
bonded repulsive interactions and only applies when rij < rc.
The repulsion parameter value depends on whether the inter-
action takes place between two B particles, an S particle and
a B particle or two S particles. The last two contributions are
included for the case of cyclo-butamer in order to ensure that
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the molecule is sufficiently planar. The random and dissipative
forces are given by28

FR
ij =

σw(rij)ζij
√
∆t

r̂ij and FD
ij = −

(σw(rij))2

2mT

[
r̂ij · (vi − vj)

]
r̂ij,

(2)

where σ is the random force amplitude, ζ ij is a uniformly
distributed random number with zero mean and unit vari-
ance, vi is the velocity of particle i, ∆t is the time step used
in the integrator, and w(rij) is a weighing function. We use
here the function suggested by Groot and Warren,28 w(rij)
= rc − rij. We express any physical quantity and constants
in reduced units as is common practice; see, e.g., Ref. 29.
In all simulations, the amplitude is σ = 3.0, the time step
∆t = 0.01, the spring constants ks = kθ = kφ = 25, and the length
rc = lb = 1. The repulsion parameters for two interacting parti-
cles of the same type are set to aBB = aSS = 25, while it varies for
unlike types. The equations of motion are integrated using the
standard velocity Verlet algorithm.28 It is important to stress
that the choices of parameters are not unique but are chosen in
order to keep the simulations numerically stable for the time
step chosen, to maintain sufficiently rigid molecules, to ensure
proper thermostating, etc.

The bitumen composition is a mixture of 200 dimers, 200
pentamers, and 200 cyclobutamers. Hence the size of the sys-
tem simulated is from 2200 to 2400 DPD particles, depending
on the polymer concentration. The density is ρ = 4.0, and tem-
peratures in the range 0.08 ≤ T ≤ 1.0 have been simulated.
For each temperature, five independent simulation runs were
performed; the last four runs used the final configuration of the
previous simulation. This allows us to investigate the system’s
equilibration process. In the first simulation, the molecular
centers-of-mass are positioned on a simple lattice correspond-
ing to the given mass density, and the DPD particles are given
a random initial velocity corresponding to the given tempera-
ture. Each run is 5 × 106 time steps, that is, a total of 25 × 106

time steps. The simulations were carried out using the seplib
molecular dynamics library.30

To investigate the mechanical properties of the model,
we evaluate the molecular stress tensor σ from the Irving-
Kirkwood definition31

Vσ(t) = −
∑

i

PiPi

Mi
−

∑
i

∑
j>i

(RijFM
ij )T , (3)

where V is the system volume, Pi is the total momentum of
molecule i, M i is the molecular mass, Rij is the vector of sep-
aration of molecule i and j, and FM

ij is the total force acting on

i due to j; that is, FM
ij =

∑
α∈i

∑
β∈j Fαβ , where particle α is

in molecule i and β is in molecule j. Note that capital letters
denote molecular quantities. This definition of the stress does
not include the dissipative and random force contributions.
It has been pointed out that these forces should, in fact, be
included;32–34 however, recently Hansen et al.35 noted that the
viscosity evaluated from the Green-Kubo integral of the stress
autocorrelation where definition (3) is used gives the correct
hydrodynamic relaxation times.

In general, the molecular stress tensor is not symmetric,36

and to calculate the viscosity, the traceless symmetric part

is extracted from the definition
os
σ = 1

2 (σ +σT )− 1
3 trace(σ).

The complex shear viscosity is then found from the Fourier-
Laplace transform37

η∗(ω) =
V

kBT

∫ ∞
0

C(t) e−iωt dt, (4)

where C(t) is the stress autocorrelation function

C(t) =
1
3

∑
nm

〈
os
σnm (t)

os
σnm (0)〉. (5)

The double index nm runs over the xy, xz, and yz components
of the symmetric traceless stress tensor. From the complex
viscosity, we have the frequency-dependent dynamic modu-
lus G∗(ω) = G′(ω) + iG′′(ω) = iωη∗(ω) and the phase angle
δ = tan−1(G′′(ω)/G′(ω)).

The viscosity characterizes the transverse dynamical
properties of the bitumen. For completeness, we also include
an investigation into the longitudinal dynamical properties of
the model via the longitudinal velocity autocorrelation func-
tion, Cuu, and density autocorrelation function, Cρρ. They are
defined by35,37

Cuu(k, t) =
1
V
〈ũy(k, t)ũy(−k, 0)〉 (6)

and

Cρρ(k, t) =
1
V
〈 ρ̃(k, t) ρ̃(−k, 0)〉, (7)

where k is the longitudinal component in the wavevector
k = (0, k, 0) and ũy and ρ̃ are the longitudinal velocity compo-
nent and density in Fourier space defined from the molecular
center-of-mass quantities as35

ρ̃(k, t) =
∑

i

Mie
−ikRi,y(t), (8)

ũy(k, t) =
1
ρ

∑
i

MiVi,y(t)e−ikRi,y(t), (9)

where Ri ,y and V i ,y are the longitudinal components of center-
of-mass position and velocity of molecule i.

III. RESULTS
A. Mechanical properties

We start by discussing the mechanical properties of the
pure bitumen model, i.e., without polymer additives. The zero-
frequency shear viscosity, η0, is first evaluated as a function
of temperature from Eq. (4) using that limω→0η

∗ = η0. The
results are shown in Fig. 2. It is seen that the viscosity fol-
lows a super-Arrhenius behavior for temperatures T < 0.1,
whereas for higher temperatures, the behavior is Arrhenius.
Real bitumens are super-Arrhenius over a large temperature
range, particularly at lower temperatures, see, e.g., Refs. 14,
38, and 39, and we will therefore mainly focus on the tem-
perature regime 0.1 ≤ T ≤ 0.2 that includes the onset of the
non-Arrhenius regime.

In Fig. 3(a), the normalized stress autocorrelation func-
tion, CN (t) = C(t)/C(0), is shown for T = 0.2 (open circles) and
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FIG. 2. Viscosity for the pure bitumen model as a function of inverse tem-
perature. The line is a fit to data points for 0.3 ≤ T ≤ 1.0, indicating the
Arrhenius regime. Standard deviations are of the same magnitude as the size
of the symbols.

T = 0.1 (open triangles). Note that the statistical uncertainty
is represented by the standard error of the sample distribution,
which is of the same magnitude as the symbol sizes. The stress
relaxation features a fast decay followed by a slower decay. We
interpret the fast decay as the collective molecular center-of-
mass vibrations, i.e., the oscillatory system phonon mode. The
oscillatory behavior is observed clearly at high temperatures,
but it is not visible in the relaxation function for T < 0.1, even
though the phonon mode must still be present. We assign the
slow decay in the relaxation function to structural collective
rearrangements in the system.

Inspired by Badami and Greenfield40 and Hartkamp
et al.,41 the stress relaxation is fitted to an extended Maxwell
model of the form

CN (t) = A0e−(t/τ0)2
cos(ω0t) +

N−1∑
n=1

Ane−t/τn

+ *
,
1 −

N−1∑
n=0

An
+
-
e−t/τN , (10)

where A0, A1, . . . AN−1 and τ0, τ1, . . . , τN are the ampli-
tudes and characteristic relaxation times, respectively. The
first term describes the fast phonon mode and the exponen-
tial terms describe the slower structural relaxations, and we
impose τ1 < · · · < τN . The first term goes to zero after short
times characterizing the phonon mode, and we recover the

TABLE I. Fitting parameters for Eq. (10) for T = 0.2 and T = 0.1. The fits
of Eq. (10) are carried out on the sample averaged data. Parameters are given
with two significant digits.

T A0 A1 A2 A3 τ0 τ1 τ2 τ3

0.20 0.22 0.70 0.08 0.0055 0.39 0.36 3.0 38
0.10 0.64 0.22 0.12 0.017 0.066 1.5 19 129

multicomponent Maxwell model42 CN (t) =
∑N

n=1 Ane−t/τn ,
where AN = 1−

∑N−1
n=0 An from above. The oscillatory phonon

mode is roughly temperature independent in the temperature
regime we study here, and in the fitting protocol, we there-
fore fix ω0 = 8 for T > 0.1. For T ≤ 0.1, the oscillations
are suppressed and the cosine trigonometric factor is set to
unity to avoid over-parametrization. From the best fit, we are
able to resolve four characteristic relaxation times τ0, τ1, τ2,
and τ3; see Table I for temperatures T = 0.2 and 0.1. The
system likely features more relaxation times, though these can-
not be resolved from the data available. The fits of Eq. (10)
to data are also plotted in Fig. 3. In general, the relaxation
times increase as the temperature decreases and the amplitudes
increase for the slow modes (τ2 and τ3) as the temperature
decreases, which is also expected. For example, at T = 0.2,
τ3 ≈ 40, and at T = 0.1, τ3 ≈ 130. However, large uncertain-
ties in the fitted parameter values prevent us from drawing
any quantitative conclusions from these parameters beyond
overall trends. A deeper understanding of the parameter space
and model uncertainties can be gained through Monte Carlo
type analysis;43 however, this is beyond the current scope.
It is worth noting that using a large spectrum of fixed char-
acteristic times and fitting the corresponding amplitudes as
performed in Ref. 40 for data over a wider range of time
scales yield poor agreement between Eq. (10) and simulation
data.

In frequency space, we have G∗(ω)/iω = η∗(ω) ∝ CN (ω),
where CN (ω) is the normalized Fourier-Laplace transformed
stress relaxation function; hence to investigate the frequency-
dependent mechanical properties, we start by studying the
normalized stress autocorrelation function CN (ω). For small
frequencies ω < ω0, i.e., at frequencies where the phonon
mode can be ignored, the normalized stress relaxation is
given by

FIG. 3. (a) Normalized stress autocor-
relation function for T = 0.2 (open cir-
cles) and T = 0.1 (open triangles). Lines
are best fit to Eq. (10). (b) Correspond-
ing spectrum for T = 0.2. The statistical
uncertainties are given by the symbol
size.
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CN (ω) ≈
N∑

n=1

An/τn

1/τ2
n + ω2

+ i
N∑

n=1

Anω

1/τ2
n + ω2

. (11)

Hence in the small frequency regime ω � 1/τN , the stress
autocorrelation function is real and CN ≈

∑
nAnτn, which

characterizes the purely viscous behavior or, equivalently, a
large loss modulus. In the frequency range ω0 > ω > 1/τn,
n = 1, 2, 3, we have CN (ω) ≈ i

∑
nAn/ω, which characterizes

the elastic regime, or a large storage modulus. The differ-
ent relaxation times and dynamical regimes can be observed
in Fig. 3(b), where the four characteristic time scales can
clearly be seen as distinct peaks in the imaginary part of
the spectrum. Note that here the lines are Fourier-Laplace
transforms of the fit to Eq. (10) and symbols represent the
Fourier-Laplace transform of the data. At low frequencies, the
model features purely viscous behavior. Growth in the imagi-
nary part of CN indicates increasing and predominantly elastic
response.

The mechanical properties are often discussed in terms
of the magnitude of the dynamic modulus, |G∗|, and phase
angle, δ. We plot these two quantities as functions of fre-
quency in Fig. 4(a). Both the transformations of the data
(symbols) and fit (lines) are shown. Again, the viscous regime
is visible for ω < 10−2, where |G∗| ∝ ω and δ → π/2. For
larger frequencies, the model behaves viscoelastically, which
is particularly evident from the phase angle. Several empiri-
cal models for the magnitude of the dynamic modulus and the
phase shift have been proposed. For example, the Christensen-
Anderson model (CA model) for the modulus and phase angle
reads44,45

|G∗ |(ω)=Gg

(
1 +

[
ω

ωc

]−ν)−1/ν

and δ(ω)=
π

2

(
1 +

[
ω

ωc

]ν)−1

,

(12)

where ν = ln(2)/R, R being the so-called rheological index,
and ωc is the frequency crossover. The CA model is shown
in Fig. 4(a) using ωc = 0.032, ν = 0.9, and Gg = 0.9. The
glassy modulus Gg was chosen as a scaling factor. The ωc

parameter was varied in the fit rather than being set to the
frequency at unit phase angle tangent in order to improve
the fit at lower frequencies. Clearly, this simple model fails
to predict the rich high-end frequency features of the model
mechanics. However, the fit can be used to extract charac-
teristic time and pressure scales. da Silva et al.45 found that
ωc ≈ 104 s−1 and Gg ≈ 0.1 GPa for two bitumens extracted
from different sources. This gives a characteristic time scale

for the model of approximately 3 µs and a characteristic pres-
sure scale of approximately 0.1 GPa. This means that for the
temperatures studied here we get viscosities in the interval
4000 < η0 < 25 600 Pa·s which is in the interval of real bitu-
mens. Note that the glassy modulus, Gg, and the characteristic
frequency, ωc, can vary considerably depending on the crude
oil source.40

In bitumen experiments, the accessible frequency range
is often limited to 10−2–102 Hz.46 In order to study the
mechanical properties in the high-frequency limit, time-
temperature superposition (TTS) is often applied.42 The basic
assumption of TTS is that the same physical processes are
present at all temperatures, but they take place on a different
time scale as the processes are affected by the temperature.
Figure 4(b) shows |G∗| scaled by the factor bT = T /T ref ver-
sus frequency scaled by the factor aT = η0(T )/η0(T ref).47 It
is observed that TTS is obeyed in the viscous regime but
fails in the high-frequency viscoelastic regime, especially at
the lowest temperature. Thus, we conjecture that different
processes take place at higher frequencies and at different
temperatures.

Lemarchand et al.4 performed detailed molecular dynam-
ics simulations of the Cooee-bitumen model14 mentioned
above, and it was shown that the slow rotation of the asphal-
tene aggregates correlates with viscosity. To see if the present
model also features this correlation, the stress relaxation times,
τ0, . . . , τ3, were compared to the relaxation times for two dif-
ferent single particle processes. To this end, we define the nor-
malized rotational correlation function for the cyclo-butamer
as Crot(t) = 〈n(t)·n(0)〉,37 where n(t) is the unit vector normal
to the plane spanned by two of the bonds in the molecule. Like-
wise, the end-to-end correlation function for the pentamer is
found from Cee(t) = 〈u(t)·u(0)〉, where u is the vector of sepa-
ration between the first and last DPD-particle in the pentamer.
Crot and Cee are plotted as functions of time in Fig. 5. These
single-particle relaxation processes follow a single exponen-
tial decay with relaxation times that are much larger than
the characteristic relaxation times for the stress. For example,
τ3 ≈ 30 which is much smaller than both τrot and τee. Also,
in this model, the rotational relaxation is faster than the end-
to-end relaxation, which further indicates that the slow modes
in the stress relaxation are not dominated by single-particle
rotation. Finally, the single-particle properties studied here
are not affected significantly by the composition, whereas the
stress relaxation is. This indicates that the stress relaxation
is not dominated by a single-particle process but instead is a

FIG. 4. (a) The magnitude of the
dynamic modulus, |G∗ |, and phase
angle, δ, for ROSE model bitumen.
Full lines are fits of Eq. (12); param-
eters are listed in the text. (b) Time-
temperature-superposition (TTS) plot.
aT = η0(T )/η0(T ref) and bT = T ref/T,
where T ref = 1.0 is used.
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FIG. 5. The cyclo-butamer rotational and pentamer end-to-end autocorrela-
tion functions. T = 0.2.

collective phenomenon. Conversely, the single-particle prop-
erties are not influenced by the environment surrounding
them.

B. Dynamical properties

Figure 6 shows the normalized longitudinal velocity auto-
correlation function, CN

uu, and density autocorrelation function,
CN
ρρ, for the two smallest wavevectors accessible in our sys-

tem at T = 0.2. We fit the hydrodynamic predictions to the data
using35,37

CN
uu(k, t) ≈ e−Γk2t cos(kcst) (13)

and

CN
ρρ(k, t) = Ke−DT k2t + (1 − K)e−Γk2t cos(kcst), (14)

where Γ is the sound attenuation coefficient, cs is the adiabatic
speed of sound, DT is the thermal diffusion coefficient, and K
is a weight factor. The fitting protocol was the following: (i)
Eq. (13) is fitted to the longitudinal velocity autocorrelation
function data for k = 0.74 and k = 1.49. From this, we obtain
values for the sound attenuation coefficient Γ and the speed of
sound cs. These values are then used to fit Eq. (14) to the density
autocorrelation function data using the diffusion coefficient
DT and weight factor K as free fitting parameters. Table II
lists the results. It is worth pointing out that while Eq. (13)
fits data very well, the agreement of Eq. (14) with the data
is less satisfactory especially at small times, which indicates
that DT is time dependent. Also, from the table, we see that
the hydrodynamic coefficients DT , Γ, and cs depend on the
wavevector, meaning that the values in Table II are not the
zero-wavevector values.

Returning to Fig. 6(b), we observe that the density auto-
correlation has two different dynamical regimes. At first, there
is a fast dampened oscillatory regime, which is a fingerprint of

TABLE II. Hydrodynamic coefficients for the bitumen model at T = 0.2.

k DT Γ cs K

0.74 0.044 ± 0.005 1.04 ± 0.01 4.79 ± 0.00 0.52 ± 0.0
1.49 0.012 ± 0.001 0.93 ± 0.00 4.69 ± 0.00 0.88 ± 0.01

propagating density waves. After this, a slow decaying expo-
nential regime is observed due to the thermal diffusion process.
This is also evident from the coefficients DT and Γ in Table II.
Since these two processes have such different characteristic
time scales, the two processes are completely decoupled on
large length scales.

The corresponding dynamic structure factor is found by
a Fourier transform of the data. However, as the simulation
data do not converge to zero in the sampling time span,
a direct numerical transformation is not possible. Further-
more, an exponential extrapolation of the data is associated
with large uncertainties and is also not applicable. Therefore
we discuss the dynamic structure factor qualitatively in the
following. From DT and Γ, we can infer that the dynamic
structure factor for the model is characterized by a sharp
Rayleigh peak (due to the thermal process) and a relatively
broad Brillouin peak (the density wave propagation), at least
for low wavevectors. This can also be stated in terms of the
Landau-Placzek ratio,48 which is the ratio of the Rayleigh and
Brillouin integral regions; for the model, this ratio is approx-
imately unity. Naturally, it would be interesting to compare
the dynamic structure factor to experimental data, but to our
knowledge, no such dynamical study on bitumen exists in the
literature.

C. Polymer-modified bitumen mixtures

The mechanical properties of the unmodified model bitu-
men serve as reference for the effects of adding a triblock
copolymer. In Fig. 7(a), the stress relaxation is plotted for three
different polymer concentrations where aBS = aBB = aSS = 25,
i.e., a homopolymer of 20 identical units. The correspond-
ing mass fractions are from approximately 1% to 10%. The
broken lines represent the best fit of Eq. (10) using N = 4;
that is, five characteristic times scales can be resolved,
τ0, . . ., τ4. The characteristic time scales are all affected
by the addition of polymers. For example, for Npol = 10 at
T = 0.2, we get τ0 = 0.022, τ1 = 2.3, τ2 = 19, τ3 = 100, and
τ4 = 600. The inset shows the corresponding spectrum for a
polymer concentration of 5.2% (Npol = 6). It is clearly seen that
an additional slow mode, which is not present in pure bitumen,

FIG. 6. (a) The longitudinal velocity
autocorrelation function. (b) The den-
sity autocorrelation function. In both
[(a) and (b)], symbols represent data
and broken lines represent best fits to
Eqs. (13) and (14), respectively. T = 0.2.



214901-7 Lemarchand et al. J. Chem. Phys. 149, 214901 (2018)

FIG. 7. (a) Normalized stress autocorrelation for different polymer concentrations at aBS = 25 and T = 0.2. The broken lines are best fits of Eq. (10) to data
using N = 4. The inset shows the imaginary part of the corresponding spectrum for Npol = 6. Also, the spectrum for pure bitumen at T = 0.2 is shown as a full
line for comparison. The statistical uncertainties are of the size of the symbols. (b) Normalized stress autocorrelation for different repulsion parameters and mass
fractions of 8.3% (Npol = 10) and T = 0.2.

has emerged around ω ∼ 0.01. Figure 7(b) shows the stress
relaxation for increasing B-S repulsion parameters while keep-
ing the polymer concentration fixed. The relaxation is dramati-
cally affected and features a very slow decay, i.e., the viscosity
increases significantly. It is also worth noting that the statisti-
cal uncertainties are relatively large for repulsion parameters
aBS = 26 and 27, indicating that the system undergoes tran-
sitions where it is trapped in different microscopic configura-
tions with very different internal stresses. This is especially
pronounced for aBS = 26.

The viscosity for polymer-modified bitumen is calculated
as for the unmodified bitumen. For systems with high polymer
concentrations, this viscosity is estimated from an integration
of the fitting function, Eq. (10), rather than directly calculated,
because the stress relaxation function has not fully decayed
in the time window imposed for averaging at the start of the
simulation. Using this method, we are only able to estimate
a lower limit of the viscosity for the high concentrations and
not any error estimates. Table III summarizes the results for
selected mixtures.

To get information about the polymer chain conforma-
tions, the average intra-polymer squared end-to-end distance

is calculated. This is defined by 〈R2
e〉 = 〈

∑Npol

i=1 (riα−riβ)2〉/Npol,
where iα and iβ are the end DPD particles in polymer chain i.
The results are listed in Table III. Within statistical uncertainty,
the end-to-end distance is unaffected by the polymer concen-
tration and follows the results from the random walk of freely
rotating polymers49 with 〈R2

e〉 = (Npol − 1)l2
b ≈ 19 (based on

an average bond length of one). As the repulsion parameter
increases, the polymer backbone conformation also changes
and the end monoblock distances decrease significantly. The

former effect is associated with a contrasting increase in the

radius of gyration, defined as Rg = 〈
∑Npol

i=1

∑
α(riα−Ri)2〉/Npol,

where Ri is the chain i center-of-mass. This indicates swelling
of the polymer without extending the chain ends. This is not
so surprising as the end blocks, formed of S particles, are
now energetically favored when they are closer to each other
and farther from the middle block, formed of B particles.
On the contrary, the middle block is energetically favored
when it is closer to other B particles rather than to the S
particles of the end blocks. Also, note here that for unper-
turbed freely rotating polymers following a random walk,
these lengths are related as 〈R2

g〉 = 〈R
2
e〉/6;49 the model

follows this approximately within statistical uncertainty for
repulsion parameter aBS = 25, corresponding to the homopoly-
mer case. The inter-polymer end-to-end distance quantifies
the distance between ends of separate chains; we define it
as

〈R2
e〉inter =

1
4Npair

〈Npol−1∑
i

Npol∑
j>i

(riα − rjα)2 + (riα − rjβ)2

+ (riβ − rjα)2 + (riβ − rjβ)2
〉
, (15)

where Npair denotes the number of polymer pairs. 〈R2
e〉inter

shows that for larger repulsion, the average distance between
end-group blocks of separate chains decreases, indicating that
these end-group blocks form clusters in the bitumen. These
clusters are stable at the highest repulsion simulated, while
for intermediate repulsion, they vary in size and number.
Two different snapshots of the polymers in a simulation with
aBS = 27 are shown in Fig. 8. In Fig. 8(a), three smaller

TABLE III. Estimated viscosities, inter- and intra-polymer end-to-end distances, and squared radii of gyration for
the different model mixtures. Values with error estimates (standard deviations) are found directly from simulation
data, while an asterisk indicates that the value is found from the integral of the fitting function, Eq. (10).

Npol 0 1 4 8 10 10 10 10

Mass fraction (%) 0 0.9 3.5 6.8 8.3 8.3 8.3 8.3
aBS . . . 25 25 25 25 25.5 26 27
η0 13 ± 2 19 ± 2 65∗ 160∗ 190∗ 380∗ >103∗ >103∗

〈R2
e 〉 . . . 18 ± 6 10 ± 4 15 ± 2 13 ± 2 16 ± 3 4.2 ± 0.3 4.1 ± 0.7

〈R2
g〉 . . . 3.7 ± 0.9 2.8 ± 0.4 3.8 ± 0.8 3.2 ± 0.2 2.8 ± 0.5 4.8 ± 0.8 4.4 ± 0.2

〈R2
e 〉inter . . . . . . . . . . . . 18.8 ± 0.3 17.6 ± 0.5 7.1 ± 0.5 4.1 ± 0.6
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FIG. 8. Snapshot of the polymer bead
position for aBS = 27 showing a poly-
mer network. Yellow spheres represent
S particles, and brown spheres represent
B particles. The white dashed lines rep-
resent the bridges forming the polymer
network.

clusters of mono-blocks are identified (yellow spheres rep-
resent S particles, and brown spheres represent B particles).
Importantly, the clusters are interconnected by the polymer
backbone forming a polymer network. In Fig. 8(b), on the
other hand, only two clusters are interconnected. It is impor-
tant to stress that this is not a matter of equilibration (within
the duration of the simulations) as the transitions between
the different configurations occur continuously. We conjecture
that it is these different microscopic configurations that lead
to the increased noise in the stress relaxation curves seen in
Fig. 7.

The formation of end-group block clusters and polymer
networks means that polymer rearrangements happen as a
large scale collective re-arrangement characterized by a slow
relaxation time. This slow collective motion governs the stress
relaxation and thus the increasing viscosity.

Because of the simplicity of the model, the formation of
small monoblock clusters can be analyzed in a framework sim-
ilar to the lattice-based Flory-Huggins theory.28 To this end,
we consider the system in terms of the single DPD-particle, B
and S, and write the Helmholtz free energy, F, as a function of
the B-particle concentration, x = ρB/ρ,

F
kBT

= x ln(x) + (1 − x) ln(1 − x) + χ(1 − x)x. (16)

One can show for monomers of B and S that for χ > χcrit = 2,
the free energy features two minima allowing for segregation.
Groot and Warren argued28 that the χ-parameter for DPD

FIG. 9. The magnitude of the dynamic modulus |G∗ | (dashed line) and phase
angle δ (solid line) for different polymer modified bitumens, calculated using
the fits of Eq. (10) to averaged data.

particles can be approximated using the relation

χ =
2α(aBS − aBB)(ρB + ρS)

kBT
, (17)

where α is a second virial coefficient found from the equation
of state

p − ρkBT
aBB

= αρ2, (18)

where p is the pressure, p = −trace(σ)/3. Simulation results22

show that the model follows the equation of state [Eq. (18)]
with α = 0.10 ± 0.03 in the density range from 2.2–4.7 and
is independent of the presence of polymers. It is important to
note that this value of α is also found in the original work of
Groot and Warren treating a simple DPD-system. At the state
point T = 0.2 and ρ= 4.0, the χ-parameter is χ ≈ 4(aBS − aBB);
hence, the simplest Flory-Huggins theory predicts segregation
for aBS > 25.5.

As a final result, we plot the magnitude of the dynamic
modulus and the phase angle of different model polymer mod-
ified bitumens in Fig. 9. Changing the polymer concentration
only has a small effect on the mechanical properties; how-
ever, changing the interaction parameter by a few percent
significantly changes both the shear resistance and elastic
response.

IV. CONCLUSION

We have presented a simple mesoscopic model for
bitumen and bituminous mixtures. The model features the
expected mechanical behavior for sufficiently low tempera-
tures: Addition of polymers increases the viscosity and shifts
the viscoelastic regime toward lower frequencies. The vis-
cosity depends on the polymer concentration in agreement
with experimental observations. The mechanical properties
are also affected by changing interactions between the end-
block and bitumen, which can induce phase separation and
microstructure. The underlying mechanism behind this lies
in the formation of end-block clusters. For sufficiently large
repulsion, these clusters are stable and segregate in the mix-
ture. For intermediate repulsion, the cluster sizes are small
and dynamical and are connected by the polymer backbone
mono-block.

The model demonstrates the need for a polymer-modified
bitumen to exhibit a supra-molecular microphase separation
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in order to be effective. It becomes a bitumen–polymer com-
posite, and this inhomogeneous material provides the changes
in mechanical response. Returning to the |G∗|/ sin(δ) specifi-
cation, the results show how addition of polymers increases
the rutting resistance for all frequencies. Especially at low
frequencies, the rutting resistance improvement is due to
the increased viscosity induced by microstructure in the
polymer-modified bitumen.

The model is not unique in the sense that the choice
of molecules (or dynamic entities) can be varied, but the
resulting systems will likely show similar mechanics. As indi-
cated by the Flory-Huggins treatment, the phase separation
of the triblock copolymer is independent of the molecular
model for the bitumen. However, the effect of the bitumen
model on the mechanical properties of the bitumen mixture
is not clear from the current analysis. Also, the choice of
parameters and molecule relative concentrations can be tuned
in order to mimic specific bituminous systems. The model
is coarse grained, which allows for a qualitative study of
the mechanical properties of bituminous mixtures over suf-
ficiently large length scales and long time scales. This can
allow further effects on mechanical properties of polymer bond
stiffness, polymer size, effects of branching, and more to be
investigated.
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