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Supplementary Note 1. Additional Experiments and Controls.  

Fig. S1. (top) Photograph of 3x9 and 1x3 in2 glass slide. (middle) Cross section of flow 

cell for 3 x 9 slides. Wetted part in light blue shows vertical flow inlet through the Kalrez 

monolith (a) and a horizontal 

flow channel in contact with 

the metal nanolayer-

containing glass slide (b) 

sandwiched between two 

silicone sheets (grey) 

underneath a top slide made 

from Plexiglas (c). (bottom) 

Photographs of the small flow 

cell used for the 3 x 1 slides. 
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Fig. S2. Closed circuit current for a 10 nm thin iron nanolayer under flow of 600 mM 

NaCl at pH 8.0 lasting 2 seconds alternating with air flow lasting 2 seconds at a flow 

rate of 28 mL min-1. 

 

 

 

 

 

 

 

 

Fig. S3. (left), Voltage induced in a 50 nm (black trace) and 10 nm (gray trace) thin iron 

nanofilm (data offset for clarity); 15 µL drops at a drop rate of 0.5 mL min-1. (right) 

Voltage induced in a 2 mm thick iron plate (black trace), commercial aluminum foil (gray 

trace, data offset for clarity), and aluminum film inside a snack bag (brown trace, data 

offset for clarity). 15 µL drops at a drop rate of 0.5 mL min-1.  
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Fig. S4. (left) OCV measured perpendicular to the drop motion while dropping a 0.6 M 

aqueous salt solution (pH 5.8) over a 5 nm thin iron nanofilm at a drop rate=0.5 mL/min 

and (right) when reversing the polarity of the probes.  

 

 

 

 

 

 

 

 

Fig. S5. OCV for a 10 nm thick iron nanofilm using 600 mM salt (top, pH 5.8, offset by 

0.2 mV for clarity) and Instant Ocean (bottom, pH 8.3) (drop rate= 0.5 mL min-1).  
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Fig. S6. OCV for a 10 nm thick iron nanofilm using drops alternating between 0.2 mM 

NaCl at pH 5.8 and 600 mM NaCl at pH 8.0 with a drop rate of 0.5 mL min-1.  
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Fig. S7. a, Induced current in a 10 nm iron nanofilm using aqueous solutions of 

alternating salinity (0.1M and deionized water, 25 mL min-1, 20 sec flow per salinity) over 

~1 hour. b, Induced current before, during, and after low (deep purple)-to-high (light 

purple) salinity transition in flow cell and video frames showing turbulent mixing in flow 

cell during salinity alternation.  
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Fig. S8. OCV measured for a 20 nm thin aluminum nanofilm using 600 mM salt (pH 5.8) 

and a drop rate of 0.5 mL/min. 

 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

Fig. S9. OCV measured for a freshly prepared 10 nm thin iron nanofilm using 100 mM 

salt and a drop rate of 0.5 mL/min (top) and zoomed in to show three voltage spike 

events (bottom). 
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Fig. S10. Plot of Fig. 3b including references provided for the comparison to previously 

reported results (orange filled circles).1= A. T. Liu et al., Direct Electricity Generation 

Mediated by Molecular Interactions with Low Dimensional Carbon Materials—A 

Mechanistic Perspective. Advanced Energy Materials 8, 1 802212 (2018); 2= H. Zhong 

et al., Two dimensional graphene nanogenerator by coulomb dragging: Moving van der 

Waals heterostructure. Applied Physics Letters 106, 243903 (2015); 3= J. Park et al., 

Identification of Droplet-Flow-Induced Electric Energy on Electrolyte–Insulator–

Semiconductor Structure. Journal of the American Chemical Society 139, 10968-10971 

(2017); 4= Q. Tang, X. Wang, P. Yang, B. He, A Solar Cell That Is Triggered by Sun 

and Rain. Angewandte Chemie International Edition 55, 5243-5246 (2016); 5= G. Zhu et 

al., Harvesting Water Wave Energy by Asymmetric Screening of Electrostatic Charges 

on a Nanostructured Hydrophobic Thin-Film Surface. ACS Nano 8, 6031-6037 (2014); 

6= S. Yang et al., Mechanism of Electric Power Generation from Ionic Droplet Motion on 

Polymer Supported Graphene. Journal of the American Chemical Society 140, 13746-
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13752 (2018); 7=. Yin et al., Waving potential in graphene. Nature Communications 5, 

3582 (2014); 8= W. Huang et al., Power generation from water flowing through three-

dimensional graphene foam. Nanoscale 6, 3921-3924 (2014). These references are 

also available in the References list below (1-8). 

 

X-ray Photoelectron Spectroscopy (XPS). XPS depth profile measurements were 

carried out with a Thermo Scientific ESCALAB 250 Xii instrument stationed at the 

NUANCE center at Northwestern University. The instrument is calibrated to the Au 4f7/2 

line at 83.96 eV. It uses a Kα radiation from a monochromatic aluminum source. A flood 

gun is used for the ejection of low energy Ar+ ions and electrons to compensate for 

surface charging. We employ the 2 mm raster size 2 keV etching mode ion (Ar+) gun at 

mid current to prevent the reduction of trivalent ions to divalent ions (9).  

 The results are shown in Fig. S11. The physical-vapor deposited aluminum 

nanolayers shows Al(III) species in the oxide nano-overlayer, and the bulk is Al(0)(10, 

11). For chromium nanolayers, XPS peaks indicate the presence of Cr(III) oxides in the 

oxide overlayer and the bulk is Cr(0).(12, 13) We have characterized iron nanolayers 

with Raman spectroscopy, X-ray diffraction, atom probe tomography, and XPS in our 

recent publications (14, 15). Iron nanolayers have nano-overlayers containing magnetite 

and hematite, protecting the Fe(0) bulk. XPS peaks of nickel nanolayers indicate the 

presence of both Ni(III) and Ni(II) oxides on the surface, while the bulk is Ni(0) (12, 16). 

For vanadium, we find V(V)/(IV) oxides on the surface, while the bulk is V(0). (12, 17) 
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Figure S11. XPS depth profile graphs of ~10 nm (A) Al:AlOx, (B) Cr:CrOx, (C) Fe:FeOx, 

and (D) Ni:NiOx films deposited on microscope slides.  Big and small black dashed lines 

represent peaks for zero-valent and trivalent/divalent forms of the elements identified, 

respectively. Blue dashed vertical line in (B) shows the absence of hexavalent 

chromium [Cr(VI)] peaks in the CrOx nano-overlayer. Vertical dotted lines in (C) show 

the presence of V(IV) and V(V) in the VOx nano-overlayers, while the dashed lines 

show V(0). Vertical solid lines in (D) and (E) show the presence of M(II) and M(III) in the 

FeOx and NiOx nano-overlayers. Please see text for details.  

Supplementary Note 2. Computational methods. Molecular dynamics simulations are 

performed using a polarizable model for the conductive regions of the iron nanolayer.  In 
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these simulations, we do not account for possible redox activity in the oxide layer, 

instead simply modeling it as an insulator. The atoms in the nanolayer are fixed in the 

face-centered cubic structure with a lattice parameter of 0.392 nm and a (111) 

termination at the interface. The orthorhombic simulation cell is oriented such that the z 

coordinate is perpendicular to the nanolayer surface, and the x coordinate coincides 

with the direction of the gate motion, and the simulation cell is periodically replicated 

only in the x and y coordinates.  In all simulations, the length of the simulation cell in the 

x and y coordinates is 4.979 nm and 4.791 nm, respectively, such that the nanolayer is 

described using seven layers of atoms, with each nanolayer layer containing 360 atoms 

(for a total of 2520 nanolayer atoms). Atoms in the nanolayer are modeled as being 

either oxide-like (i.e., non-polarizable) or metallic (i.e., perfectly conductive).  In all 

simulations, the top layer of atoms in the nanolayer is assumed to be oxide-like, and the 

arrangement of oxide-like atoms below the nanolayer surface is varied to model the 

subsurface heterostructure, as described. 

 Interactions between atoms in the nanolayer and other atoms in the simulation 

cell are described using both electrostatic and Lennard-Jones (LJ) interactions.  Oxide-

like atoms in the nanolayer are uncharged, while the charges of the metallic atoms of 

the nanolayer are allowed to fluctuate in response to charges in the solution.  The 

metallic portion of the nanolayer is modeled as one of two fixed-potential electrodes with 

zero potential bias, with the fluctuating charge distribution in the metallic portion of the 

nanolayer described in terms of a sum of atom-centered spherical Gaussian functions, 

𝑄! 𝒓, 𝑡 = 𝐴!(𝑡) ∗
!!

!

!/!
𝑒𝑥𝑝 −𝜂! 𝒓− 𝑹! , Eqn. S1 
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of width η=19.79 nm-1 and amplitude 𝐴!(𝑡)  that is determined using an extended 

Lagrangian method (18).  Although all calculations involving the iron nanolayer focus on 

a single solid/liquid interface, the fixed-potential electrode simulation model requires that 

two electrodes be included in the simulation cell; the second polarizable electrode was 

simply placed a large distance from the interface of interest, separated by ~10 nm of 

vacuum in the z coordinate.  All simulations are performed using the LAMMPS software 

package (19). 

 

Fig. S12. For various positions of a single monocation, the distribution of induced 

charge in the metallic portion of the nanolayer, Q(x,z), integrated over the y-coordinate 

of the simulation cell. Nonpolarizable oxide atoms are indicated in pink.  The position of 

the monocation is indicated with the black circle, illustrating various displacements with 

respect to the position of the subsurface heterostructure. 

 

Nanolayer/liquid interface MD simulations. Simulations of aqueous solutions in 

contact with the nanolayer were performed using SPC/E water and NaCl ions (20, 21). 

LJ parameters for the Na+, Cl-, and nanolayer atoms are provided in Table S1. The 
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cross terms are obtained using Lorentz-Berthelot mixing rule. The LJ interactions and 

the real-space part of the Coulomb interactions are truncated at 0.98 nm; the long-range 

contribution of Coulomb interaction is treated by the particle-particle particle-mesh 

method (22). Via these LJ interactions, the oxide surface preferentially interacts with the 

Na+ cations over the Cl- anions. 

 σ (nm) ε (kcal/mol) 

Na+ 0.235 0.13 

Cl- 0.44 0.1 

O (SPC/E water) 0.3166 0.1554 

Nanolayer atom 0.2534 0.078 

Table S1. Lennard-Jones parameters for water, ions, and nanolayer atom (23). 

 

To enforce the regions of alternating salinity in the solution (Fig. 4e), 

semipermeable boundaries are introduced to interact only with the NaCl ions; the 

boundaries are positioned at x=1.25 nm and x=-1.25 nm in the simulation cell, and they 

interact only with the salt ions via a truncated LJ potential with epsilon=10 kcal/mol and 

sigma=cutoff=0.1 nm.  Simulations of the solution/nanolayer were initialized with a slab 

of water/ions in contact with the nanolayer; after a short period of equilibration, the 

outermost layer (furthest from the nanolayer) was frozen in space to provide a fixed, 

amorphous boundary between the solution region and the vacuum of the remaining 

simulation cell.  Finally, the distance between this fixed layer of water molecules and the 

position of the nanolayer was adjusted so that the pressure of the confined solution was 

1 atm, and it was confirmed that the osmotic pressure introduced by the semipermeable 
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boundaries did not significantly alter the density of water in the ionized vs. deionized 

solution regions.  The final thickness of water along the confinement is ~ 3 nm. 

The classical molecular dynamics equations of motion were evolved using the 

velocity Verlet integrator with a timestep of 2 fs; rigid-body constraints for the water 

molecules were enforced using the SHAKE algorithm (24). The simulations were 

performed at a temperature of 298.15 K, enforced via the Nosé-Hoover thermostat with 

a damping timescale of 100 timesteps. 

Supplementary Note 3. Fig. S13 presents the equivalent circuit for the current induced 

in the system of liquid flow across the nanolayer with alternating high- and low-salinity 

segments. The leftward electrical current in the nanofilm is generated by the relative 

motion of the ions (adsorption or desorption) that form the electrical double layer as the 

salinity gradient boundaries move.  

 

Fig. S13. Equivalent circuit for the current induced in the system of liquid flow across 

the nanolayer with alternating high- and low-salinity segments.  At top, the alternating 

salinity of the liquid and flow direction are indicated. The liquid resistance to ion flow at 

Low
salinity

High
salinity

Flow
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low and high salinity are indicated by RW,L and RW,H, respectively.  The resistance to 

electron flow in the contact area between the nanolayer and water at low and high 

salinity are indicated by RN,L and RN,H, respectively.  The interfacial capacitance at the 

front and rear salinity boundaries (CF and CR, respectively), which include contributions 

from the redox activity of the semiconducting metal oxide layer. 

Note that Fig. S13 is closely related to the equivalent circuit presented for droplet 

motion on graphene in Ref. 2 of the main text (25), with two key distinctions.  First, the 

current case is for liquid flow with alternating salinity.  Second (and more important), the 

interfacial capacitance in the system presented here includes contributions from both 

the image charge formation in the metal layer as well as the large effect of electron 

transfer within the semiconducting metal oxide layer of the nanofilm surfaces. 

Supplementary Note 4. PVD onto solid and flexible polymers. 

Fig. S14. Current density vs flow velocity for a ca. 35 

nm thin Fe:FeOx nanmolayer on a poly(ethylene) 

terephthalate (PET) substrate obtained when 

alternating deionized water and 1 M NaCl solution 

segments every 20 sec.  

Fig. S15. Photograph of Fe:FeOx nanolayer PVD's 

onto Saran wrap glued to two wooden handles.   
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